The advance of materials promises more resilient, more sustainable and healthier choices for our living environments. Now, researchers are also breaking into a new realm of self-healing materials that will redefine product specifications. Here, this article from Physics explains.

Imagine you're an astronaut on a spacewalk. You're doing your job when suddenly you get an alert: Your suit is leaking oxygen. Somewhere there's a hole in your suit, a hole so tiny you can't find it.

Some materials should not break because the results would be catastrophic. What if instead of breaking, these materials could toughen up at a weak spot? What if that hole in your astronaut suit could heal itself?

Biological systems handle this problem all the time. Sometimes fingers get calluses so they don't get cut. Calluses form when repeated stress causes the skin to toughen. The tough skin provides resistance to breaking. But sometimes fingers get cut and the skin heals itself back together by forming a scab at the surface.

"How does the device know what to regrow and repair?" asks Rebecca Schulman of Johns Hopkins University. "Is it possible to avoid the self-healing problem altogether?" The latter question is the same thing skin asks: Do you need to form a callus or a scab?

The future of materials science covers a smorgasbord of applications: batteries that self-repair, wind turbines robust enough to withstand the extreme forces put on them, or long-lasting devices that only require replacing small parts every so often. Before getting to these applications, these basic science questions need to be answered. These questions are one reason the Department of Energy (DOE) supports research in this area at universities and national laboratories around the country.

Read More