Ever think of cooking breakfast as a power generator? Maybe the eggs and bacon give you energy, but now the pan could transmit enough electricity to charge a cell phone.
With net zero on the horizon and even net positive as a future goal, housing providers will look to suppliers to explore new solutions that contribute to the regulations that they will face and contribute to the overall energy performance of a home.
Thanks to the discovery of a new material by University of Utah engineers, jewelry such as a ring and your body heat could generate enough electricity to power a body sensor, or a cooking pan could charge a cellphone in just a few hours.
The team, led by University of Utah materials science and engineering professor Ashutosh Tiwari, has found that a combination of the chemical elements calcium, cobalt and terbium can create an efficient, inexpensive and bio-friendly material that can generate electricity through a thermoelectric process involving heat and cold air.
Their findings were published in a new paper March 20 in the latest issue of Scientific Reports. The first author on the paper is University of Utah materials science and engineering postdoctoral researcher, Shrikant Saini.
Thermoelectric effect is a process where the temperature difference in a material generates an electrical voltage. When one end of the material is hot and the other end is cold, charge carriers from the hot end move through the material to the cold end, generating an electrical voltage. The material needs less than a one-degree difference in temperature to produce a detectable voltage.
Read More