The evolution of 3D printing is bringing manufacturing of large scale items from hours to minutes. A unique collaboration between MIT and the furniture maker Steelcase is revolutionizing how furniture can be designed.

A 3D printer stands mute in a shadowy hallway at MIT, its two-axis robotic arm hunched over the cramped printing tray like a hollow suit of armor. The machine, which produces small-scale objects out of powder and adhesives, is just over two decades old. But it looks like a fossil from a distant era.

“These printers have always presented the same challenges,” says Skylar Tibbits, codirector of MIT’s Self-Assembly Lab, a happy hybrid of design studio, mad scientist’s research laboratory, and playground housed in the university’s International Design Center. “They can’t make large-scale objects. They are generally slow. And the objects they produce generally deteriorate quickly, either because they’re composed of layers which degrade over time or because they’re made of low-quality materials. For some time, our lab was looking for an opportunity to totally rethink 3D printing.”

That opportunity came last June, when Tibbits received a call from Rob Poel, director of new business innovation at Steelcase. Poel had picked up on market signals that clients had a desire for customized furniture. And he wondered whether 3D printing could be part of a future solution. “More and more, our clients want unique products and environments, things that truly speak to who they are,” says Poel, who knew of Tibbits and his laboratory through several previous collaborations with Steelcase. “The question I posed was whether it might be possible to print a large-scale item like a chair or table in minutes instead of hours. So we reached out to the person who I knew was most fluent in that language.”

The discussion between MIT and Steelcase yielded a process that, in addition to revolutionizing 3D printing, may create new possibilities for manufacturing and commerce. Called rapid liquid printing (RLP), the process uses machines to literally draw objects in 3D space. Driven by a computer, a robotic arm traces liquid forms in a vat filled with a gel suspension; variations in nozzle size, pressure, and the liquid mixture allow changes in size, color, and printing speed. Made of high-quality materials including rubber, foams, and plastic, the traced forms are left in the gel suspension to cure, and then removed. RLP enables the creation of large-scale objects and can also reduce production times from hours to minutes.

Read More