As home energy production and storage becomes more and more commonplace, the development of higher performing storage will be critical. Researchers at the University of Illinois Urbana-Champaign are leveraging their research on self-healing plastics to create self-healing batteries.

While more research is still needed, this innovation has broad implications.

Batteries — whether they’re powering a smartphone or storing energy on the grid — take a beating.

Repeated charging and discharging causes all kinds of wear and tear on the devices we increasingly rely on to keep our gadgets, cars and renewable energy sources running. But what if batteries could repair themselves automatically and fix on-the-fly the cracks that lead to dead laptop batteries, the limited range of electric cars and other modern woes?

That’s the idea behind the work of a team led by two professors at the University of Illinois Urbana-Champaign (UIUC). They’re taking self-healing materials research and applying it to a novel subject area: energy storage. The hope is that a better understanding of how nanoparticles bind and come undone will lead to more reliable, longer-lasting and higher-capacity batteries.

“The idea was to try to take some of the self-healing work we’ve done in plastics and bring it into the battery world, because batteries do have all these reliability issues,” says Nancy Sottos, a professor of materials science and engineering, and one of the lead researchers on the project. “There’s a lot of cracking and chemical changes that go on in the battery that are, in general, undesirable. And of course what you see in your devices is basically they’re just not charging anymore.”

Read More